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Abstract A model with interparticle inharmonic interaction under the �4 external potential
is studied. Making use of the special relation of relevant parameters, in the continuous limit,
it was possible to obtain various non-classical soliton solutions, specifically, compact and
peak-like solutions. The solutions undergo a jump on their first derivatives at some points
of the space-time manifold. These analytic solutions were obtained by considering strong
restrictions on their velocities and on the jump conditions. The energy concentrated in these
solutions shows in several cases a discrete spectrum.

Keywords Non-classical solitons · Peakons · Compactons · Compact bubbles · Discrete
energies

1 Introduction

The investigations for obtaining non classical solutions like peakons, compactons or cusps
are still rich fields of research. The concept of compacton, appeared first in the context of so-
lutions of nonlinear lattices, before they were discovered in some other branches of physics.
Rosenau and Hyman [19] studied the special type of the modified Korteweg De Vries equa-
tion KdV (m,n) and found that the solitary waves might compactify in the presence of
nonlinear dispersion. The compact soliton due to their absence of tails will not interact with
other structures at long distances. In opposite, the classical soliton, for instance, in nonlinear
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optical fibers, generates strong restriction limitations during the transmission of information
between two points at long distances [1]. Other areas of applications are the formation of
vortices in hydrodynamics and the formation of dislocations in solid bodies under stress and
self-capture of energy in the proteins (self-trapping) [18]. This type of compact solutions
could better model the matter without tails and consequently have direct applications in the
study of particles because of their local interaction properties [4]. Kivshar [16] discovered
the possibility of the existence of compact breathers in a system of identical particles with
pure pair inharmonic interaction and further P. Tchofo and M. Remoissenet found compact
breathers for the same system that we are studying in this work. In the article [3] the compact
like solutions were discovered for the equation that describe the shallow water. The investi-
gation of compactons in a chain of dispersively nonlinear coupled oscillators was done by
Pikovsky and Rosenau [17]. The relevance of compactons for applications in practical and
theoretical studies should be found in the works [2, 7, 10, 12, 15, 17, 20] and citation therein.
We quoted only several papers and obviously it is not complete.

On the other hand, Camassa and Holm [5] (CH), began a systematic study for water
waves and found piecewise analytic solutions that were named as peakons. These analytic
solutions usually have a corner at their crest. Further Zheng and Lai studied the generalized
Camassa-Holm equation and found peak patterns under various circumstances [23]. The
generalization of CH system associated with singular solutions can be found in the work of
Tian and Sun [22]. Various families of higher order peak solutions are also found in the Kro-
nig Penney model in the presence of the uniform cubic quintic nonlinearity [11]. Recently,
like the Camassa-Holm and Degasperis-Procesi equations, the Novikov partial differential
equation with cubic nonlinearity also supports peakons [14]. The two-component analog of
CH equation with respective solutions could be found in the work [13] and citation therein.

The system studied here consist of a chain of particles joined along the line with anhar-
monic inter particle potential and subjected to an external θ4 potential. We study this system
in the continuum limit and were able to find compact and peak solutions. So, we focus on
the study of analytical solutions of the following equation:

θ̈ − κ

[
3

(
∂θ

∂x

)2
∂2θ

∂x2

]
+ (αθ − βθ3) = 0. (1)

This equation involves one potential between neighbors (second term) and the potential on
site with inharmonic interactions (last terms). In several works [6, 8, 9, 21], it has been
demonstrated that this type of system with similar characteristics for the Hamiltonian (4)
supports interesting non classical solutions.

Having considered the two types of boundary conditions, we were able to obtain solutions
with and without tails. Since our solutions were piece wise analytical we used the jump
conditions for obtaining physical appropriated solutions. The jump conditions were verified
and helped us for selecting the physical accepted solutions. After this treatment, the energy
of the obtained structures were found. The analysis done on the energetic spectrum showed
unexpected discrete values for determining the energy of the solutions.

The next section gives the derivation of the motion equation from the hamiltonian model.
Section 3 deals with the obtention of traveling structures linked to the analysis of jump
conditions. Our solutions are mainly obtained by gluing different parts of exact solutions of
transcendental algebraic equations. The non-classical traveling waves are exposed widely in
this section taking in consideration two boundary conditions: the trivial and the condensate
ones. In Sect. 4 we show the appearance of discrete energy spectrum for the solutions.
Finally we conclude the work with some comments that is done in Sect. 5.
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2 Mathematical Model and Equations of Motion

Our studies are realized in a one dimensional space time manifold of the nonlinear Klein
Gordon model. Consider a lattice of identical atoms for which the neighboring interactions
are modeled by the pure nonlinear potential

U(θn − θn−1) = 1

4
κ(θn − θn−1)

4 (2)

Where θ(t) is the on-site degree of freedom and κ is a parameter that controls the forces
between the nonlinear pair of pendulum. This potential represents the interaction in a system
of identical atoms through inharmonic forces. Next, consider the system is subjected to
external forces given by the potential V at the site “n”

V (θn) = αθ2
n

2
− βθ4

n

4
(3)

This term represents the potential for external interaction with the neighborhood and pos-
sesses two equilibrium positions like a pendulum. Thus, the Hamiltonian of the model can
be written as

H =
∞∑

n=1

[
1

2
θ̇2
n + U(θn − θn−1) + V (θn)

]
(4)

Additionally, the potential part V (θ) has the characteristic that it can confine the solution
inside its infinite walls. As it is easy to see this potential has a harmonic contribution in the
first term and inharmonic contribution in the second one. The parameter β is the measure of
the harmonicity and plays an important rule in the stabilization.

The corresponding equation of motion of the nth particle becomes

d2θn

dt2
− dU(θn+1 − θn)

dθn

− dU(θn − θn−1)

dθn

= −dV (θn)

dθn

(5)

Where as we pointed out U(θn − θn−1) describes an interaction potential between pair of
neighboring and V (θn) describes a site potential of interaction with the external medium.
Substituting the potentials in the equation of motion (5) one obtains the nonlinear lattice
equation

θ̈n + κ[(θn − θn−1)
3 + (θn − θn+1)

3] + (αθn − βθ3
n ) = 0 (6)

Suppose that the field θ varies slowly from one site to another, and 2β � κ , thus one can use
the continuum approximation that was successfully employed in [9, 21] and (6) transforms
to the next nonlinear differential equation

θ̈ − κ

[
3

(
∂θ

∂x

)2
∂2θ

∂x2

]
+ (αθ − βθ3) = 0 (7)

Let us analyze the important case of traveling waves as solutions of the nonlinear differential
equation (7). Thus the new variables are

s = x − ut → θ(s) = θ(x − ut) (8)
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with arbitrary values of velocities u. Making the standard change of variables for traveling
waves in (7) we obtain the new nonlinear equation of motion

u2 d2θ

ds2
− κ

[
3

(
dθ

ds

)2
d2θ

ds2

]
+ (αθ − βθ3) = 0 (9)

We now multiply (9) with dθ
ds

and integrate again, to obtain the next ordinary differential
equation

(
dθ

ds

)4

− a

(
dθ

ds

)2

+ b(α − βθ2)2 = 0 (10)

with the simplified parameters

a = 2u2

3κ
, b = 1

3βκ
(11)

3 Non Classical Traveling Waves

3.1 Jump Conditions

The jump condition was used as an approximative tool for building soliton like solutions.
This method is used worldwide in the theory of complex liquids and other branches of
physics. So, we use this approach for obtaining solutions u(x) by gluing available branches.
Assume that at some critical point s0 occur the jump i.e. the first derivatives of the branches
satisfy the equation

lim
ε→0

∂u

∂x

∣∣∣∣
x0+ε

x0−ε

�= 0 (12)

This expression would show the behavior of the derivatives when the solution crosses the
point x0. If the jump is different from zero then the derivative is discontinuous and the jump
occurs. This would enable us with some tool to glue the branches. First of all we integrate
the equation in the neighborhood of the point s0 under which the branches are glued

s0+ε∫
s0−ε

(
u2 d2θ

ds2
− κ

[
3

(
dθ

ds

)2
d2θ

ds2

]
+ (αθ − βθ3)

)
ds = 0 (13)

After subsequent calculations we derive the condition that has to be satisfied by the branches
at the point of jump

θs(s0) = ±
√

a

2
(14)

This result will be used in the next sections in different situations concerning the building of
solutions.

The jump conditions (14) permit us to obtain physically accepted solutions among the all
possible mathematical solutions. All the solutions obtained below are inverse functions of
the function s(θ). These solutions are formed by gluing at crucial points different branches
that satisfy the initial and jump conditions. In several cases, for each solution its correspond-
ing anti-soliton partner could be composed by inverting the sign of the branches that form
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the solution. Only at a few number of them the continuity of the first derivation is satisfied.
In few cases it is possible to conserve the continuity of the solution. In some other ones when
discontinuities occur the branches are glued each other by translations. This translation does
not modify the properties of the solution since each part travels with the same velocity. The
necessary step 	 for gluing the solutions will be defined by the boundary condition s0 and
corresponds to some retarded value in the space s. The value of s0 will be determined by the
point θ0 as initial condition. When the boundary condition is of the type of condensed one,
the values of s do not always be the same, that can be denoted as θ0(s)

−1.
Next, we impose physical boundary conditions for solving (10). These conditions will

provide us with the specific restrictions to the values of the wave velocities and to the para-
metric domains of the model. First, we take into account the trivial boundary conditions and
subsequently we will use the condensate type of boundary conditions.

3.2 Trivial Boundary Conditions

We analyze the nonlinear equation (10) subjected to the boundary condition of the following
type s → ±∞, θ → 0, θs → 0. From here it is easy to notice that the only possible solutions
are those for which the coupling α vanishes i.e. α = 0. Consequently, (10) is transformed to
the next one:

(
dθ

ds

)4

− a

(
dθ

ds

)2

+ bβ2θ4 = 0 (15)

Resolving (15) by quadratures we obtain

ξ

√
a

2
ds = dθ√

1 + μ
√

1 − σθ4

do (16)

where the parameter σ is defined by

σ = 3κβ

u4
(17)

Because of the signs of ξ = ±1 and μ = ±1, the expression (16) permits us to consider four
different cases for the branches for composing solutions and we denote them as: (μsξ ). The
replacement of the jump condition (14) into (15) yield the field values where jumps occur
at.

θ0 = ± 4

√
1

σ
(18)

These values are used thus for selecting the acceptable branches and we are now in position
to obtain the following solutions:

Compact Solution The first case is defined by: μ = +1 and ξ = ±1. Taking in mind these
signs we integrate (16). By solving this equation we obtain two analytical implicit solutions
that we denoted as: +s+ y +s− in accordance with the signs of μ y ξ .
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Fig. 1 The profile of compact
pulse where for qualitative
reasons we used the values a = 1
and σ = 16

ξ

√
a
√

σ

2
(+s − s0) = Arc tan

[
−1 +

√
2
√

σθ2

1 + √
1 − σθ4

]
+ Arc tan

[
1 +

√
2
√

σθ2

1 + √
1 − σθ4

]

− 1

4
Ln

[(
−1 +

√
2
√

σθ2

1 + √
1 − σθ4

−
√

σθ2

1 + √
1 − σθ4

)2]

+ 1

4
Ln

[(
1 +

√
2
√

σθ2

1 + √
1 − σθ4

+
√

σθ2

1 + √
1 − σθ4

)2]

−
√

2
√

σθ2

1 + √
1 − σθ4

The first branch is defined by θ(+s+) in the interval s ∈ (−∞,0] and the second one as
θ(+s−) in the interval s ∈ [0,∞). Using these branches it is composed a structure in the
form of compact pulse with bell shape similar to orthodox solitons but without tails. The
profile of compact pulse is shown in Fig. 1.

Peak Solution In the second case the solutions are defined by the signs μ = −1 y ξ = ±1
that are applied also to (16). Under these circumstances we denote the new branches by:
−s+ y −s− in accordance with the signs of ξ and μ.

ξ

√
a
√

σ

2
(−s − s0) = −Arc tan

[
−1 +

√
2
√

σθ2

1 + √
1 − σθ4

]
− Arc tan

[
1 +

√
2
√

σθ2

1 + √
1 − σθ4

]

− 1

4
Ln

[(
−1 +

√
2
√

σθ2

1 + √
1 − σθ4

−
√

σθ2

1 + √
1 − σθ4

)2]

+ 1

4
Ln

[(
1 +

√
2
√

σθ2

1 + √
1 − σθ4

+
√

σθ2

1 + √
1 − σθ4

)2]

− 4

√
1 + √

1 − σθ4

2
√

σθ2
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Fig. 2 Typical peak soliton like
solution with parameter values:
a = 1 and σ = 16

The first branch θ(−s+) of the structure is defined on the interval s ∈ (−∞,0], and the
second one θ(−s−) on the interval s ∈ [0,∞]. From these branches it is composed a non-
classical solution that is known as “peakon”. This solution has a discontinuity of the first
derivative in the apex and its profile is shown in Fig. 2. The other two cases do not satisfy
the trivial boundary conditions and consequently we disregard them.

3.3 Condensate Boundary Conditions

In this part we analyze the condensate or nontrivial boundary conditions for (10) under
which the field cannot reach the zero values at infinities, instead it takes a constant value at
the frontiers: s → ±∞, θ → θ0 = const., θs → 0. Under these conditions the new nonlinear
equation is reduced to

(
dθ

ds

)4

− a

(
dθ

ds

)2

+ b(α − βθ2)2 = 0 (19)

and the limiting field values at infinities are:

θ0 = ±
√

α

β
(20)

These values correspond to minimums of the double degenerated potential. Resolving (19)
by quadratures we obtain the expression

±√
2f ads =

√
1

1 ∓ sin z

cos zdz√
1 ± cos z

(21)

where the following relations have been used:

± sin z = 1 − f θ2, α =
√

βu4

3κ
, f = β

α
(22)

and σα = 1.
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Now we have four particular expressions that are distinguished by the signs of the com-
bination denoted as ∓±s. For better treatment of the jump condition we rewrite (19) in the
following manner

dθ

ds
= ±

√
a

2

√
1 ±

√
1 − (1 − f θ2)2 (23)

and try to guess the value for θ at the jump. When we substitute (14) in the previous equation,
we find the field points at which the jumps occurs

θ0 = ±
√

2

f
and θ0 = 0 (24)

These values will be used a posteriori for building acceptable solutions. Integrating (21)
it is obtained for the general case a family of non-classical solutions for the inverse function
s = s(θ). Among the all possibilities we report here only those solutions that represent
physical interest. From (21) one can obtain transcendental equations for the unknown field
function θ(s). Thus for identifying the solutions we use the notation pqsςω, being ς = ω =
p = q = ±1.

3.3.1 Case I

For this case there are four pairs of branches that is determined by the transcendental equa-
tion obtained by integrating (21)

ς2
√

f a(−+sςω − s0) = −Arc sin(1 − f θ2) + Ln

(
1 + ωθ

√
2f − f 2θ2

2

)
(25)

where

f = β

α
, a = 2u2

3κ
(26)

As it can be seen from the transcendental equations in general, the branches for deter-
mining solutions depend on the signs of ς,ω and on the parameter values. We present here
the solutions that have been built by joining the branches for different values of the signs
ς,ω with p = −1, q = +1 and organize them in the following manner

Solution A For this solution the initial condition was taken as θ0 = 0. The first branch is
defined as: θ(−+s++) in the interval of s ∈ (−∞,0] and the second branch as θ(−+s−−) in
the interval s ∈ [0,∞). Similar structures were found in [9] and [2], and is known as compact
kink. This solution looks like the famous kink solution but it is remarkable to observe that
this solution does not have wings (Fig. 3). It is a twist in the independent variable and
represents not only a physical interest but also topological meaning.

Solution B In this case, the first branch of the structure is defined as: θ(−+s+−) in the
interval s ∈ (−∞,0] and the second branch as: θ(−+s−−) in the interval of s ∈ [0,∞).
These branches permit to build a structure like a compact-pulse a localized structure on the
condensate with a popular bell shape. This solution is also named as soliton on the step
(Fig. 4).
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Fig. 3 Compact kink structure
that is localized inside the
interval defined by the equations
−+s++ and −+s−−

Fig. 4 Soliton like structure on
the step, with bell shape similar
to the common soliton solution

3.3.2 Case II

The next interesting cases arise from the following transcendental equation:

2ς
√

f a(++s − s0) = −Arc sin(1 − f θ2) − Ln

(
1 + ωθ

√
2f − f 2θ2

2

)
(27)

As in the previous important cases, each branch is denoted by ++sςω. We thus organize
the following solutions as

Solution C The first branch of the structure is defined as: θ(++s−+) in the interval s ∈
(−∞,0] and for the second branch θ(++s++) in the interval s ∈ [0,∞). From these pieces
it has been composed a kink structure. The initial condition used θ0 = 0 allows one to match
the jump condition as before (Fig. 5).
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Fig. 5 Kink like structure
defined by the equations
++s−+ y ++s++

Fig. 6 Anti-bubble compact
structure, that is characterized by
the absence of wings and is the
mirror image of the normal
compact bubble solution

3.3.3 Case III

The equation for determining the branches is

2ς
√

f a(+−s − s0) = −Arc sin(1 − f θ2) + Ln

(√
f θ + √

2 − f θ2

2

)2

(28)

Solution D These branches we designate as +−sς . In this occasion we were able to find a
solution named as anti-bubble compact solution because the field takes only negative values.
In other words it is a mirror image of a compact bubble solution and is depicted in Fig. 6.
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4 Energy Properties

First we deal with solutions that arise applying a trivial boundary condition. The energy of
each non-classical solution is obtained by using the Hamiltonian density:

H = u2

2

(
dθ

ds

)2

+ 1

4
κ

(
dθ

ds

)4

− βθ4

4

Consequently, for the both first solutions the energy can be obtained from the following
expression:

E =
√

a

2

∫ θ2

θ1

u2

2

√
1 ±

√
1 − σθ4 + a

8
κ

(√
1 ±

√
1 − σθ4

)3

−
βθ4

4

a
2

√
1 ± √

1 − σθ4
dθ (29)

where the inferior limit corresponds to the height of the pulse or peakon, i.e. the point where
the branches are gluing and represents the height of the wave, while the superior limit is
given by the trivial boundary conditions, thus we have:

θ1 = ± 4

√
1

σ
, θ2 = 0

After making some change of variables and integrating (29) one can compute the energy of
the first compact pulse solution:

E1 = u2√a

σ 1/4

[
− 63

192
(4p + 1)π + 63

192
Ln(

√
2 + 1)2 + 1

8

(
17

2
√

2
− sin

3(4q + 1)π

4

)]

+ u2√a

σ 1/4

[
63

192
rπ

]

Where the parameters p,q, r take only integer values. Consequently, the energetic values of
the compact pulse solution present an unexpected behavior showing a discrete spectrum.

Similarly, for the peak solution the energy values are given by

E2 = u2√a

σ 1/4

[
63

96
pπ + 63

96
Ln(

√
2 − 1) + 1

8

(
3√
2

+ sin
3(4q + 1)π

4

)]

−u2√a

σ 1/4

[
63

192
rπ

]

Also in this case we obtained a discrete spectrum of energy because of the values of
p,q, r . We observe that these non-classical solutions support discrete energy values and
in some sense they have certain similarities with quantum properties. It is expected that in
this kind of one dimension or quasi one dimension model, should be easily excited those
solutions with the lowest energy values.

For the second type of solutions with nontrivial boundary conditions it is possible to
obtain their energies by using the Hamiltonian density:

H = 1

2

(
u

dθ

ds

)2

+ 1

4
κ

(
dθ

ds

)4

+
(

αθ2

2
− βθ4

4

)
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From which the energy spectrum will be calculated using in standard approach and we
obtain:

E =
∫ θ2

θ1

u2

2

(√
a

2

√
1 ±

√
1 − (1 − f θ2)2

)
+ 1

4
κ

(√
a

2

√
1 ±

√
1 − (1 − f θ2)2

)3

+
√

2
a
( αθ2

2 − βθ4

4 )√
1 ± √

1 − (1 − f θ2)2
dθ (30)

Where we take into consideration the following relations:

a

2
κ = u2

2
, α =

√
βu4

3κ
,

α

a

1

f
= u2

2
,

β

2a

1

f 2
= u2

4

After using change of variables and the parameter values for each cases, we can integrate
the expression (30) and evaluate the energetic values. Below we present the results, where
the subindex n of the expression En corresponds to the type of solutions with the nontrivial
boundary condition presented in the previous section

EA = u2

8

√
a

f

[
−65

4
− 13π

16
[(m + m′) − 4(r + r ′)] + 3 Ln

1

2

]

EB = u2

8

√
a

f

[
23

4
+ 13π

16
[4(s + s ′) − (l + l′)] + 3 Ln

1

2

]

EC = −u2

8

√
a

f

{
3

2
+ 13

16
π(s + s ′) + 3

16
[(−1)s + (−1)s′ ]

−
[
−3 + 13

16

(
π(m + m′) + cos

mπ

4
+ sin

mπ

4
+ cos

m′

4
+ sin

m′π
4

)
+ Ln

1

2

]}

ED = −u2

8

√
a

f

{
15

8
− 13π

4
(p + p′ + 1) −

[
21

8
− 13π

16
(m − m′) + Ln

1

2

]}

As can be seen from the previous relations all these energies have specific discrete values
because of the integer values of m,m′, l, l′,p,p′, r, r ′. The general form of the energy for
both solutions with trivial boundary condition has the following form

E = ρu4

(
4

(3κ)3β

)1/4

where ρ is the numerical discrete coefficient. Comparing both energies in their minimal
values it is observed that the peak like solution has less energy than the compact pulse. Thus
we can say that the peakon is the excitation with major probability to emerge along the
chain.

For the case of solutions with nontrivial boundary condition the general form of the
energies is given in terms of the parameters u, κ and β:

E = γ
u4

8

(
2κ3β

)−1/4
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Where γ is the numerical coefficient for each solution and u is determined by α, κ y β .
Similarly, by analyzing the minimal energy values and comparing the obtained results we
can infer that when the condensate boundary condition is applied, the excitation with more
probabilities to appear is a compact pulse structure.

5 Conclusions

For the system of coupled particles in the discrete system, it has been used potentials of inter-
particle interactions of anharmonic type and the substrate four potential φ4. This system was
transformed to a continuous model which has been resolved for the traveling wave solutions.
The anharmonicity or the nonlinear dispersion shows a rich variety of new possible type of
static or traveling solutions. It has been considered two types of boundary conditions: the
trivial and the condensed boundary ones. The sign of the an-harmonic term determines the
attractive or repulsive type of interactions between particles. The solutions were obtained
from six different transcendental equations. The first two of them were used for the trivial
boundary conditions and the next four equations were analyzed with the condensed type of
boundary conditions. As it is well known the solitons are special solutions. In this work we
have found strong restrictions for the velocities of each composed solution in dependence on
the specific parameter values. In addition it has been obtained the corresponding energies of
each solution. The compact pulse and the peak like solution could coexist in the same para-
meter regions. For the condensed type of boundary condition it has been found the following
structures: compact-kinks, kinks, solitons on step and anti bubble compact solutions. In this
case, all solutions exist for the same region of the principal parameters. In other words, all
solutions can coexists at the same time if they are excited in the system. These solutions
complements the rich variety of solutions reported in the literature.

All the energies of our structures have discrete values. These values are determined by in-
teger numbers similar to solutions of vibrating strings in the classical example of oscillations
in linear systems. The velocities are constrained and we can identify them because of their
dependencies on the parameters κ,α,β given by the potential pieces of the corresponding
hamiltonian. For the solutions with condensed boundary conditions we have

u = 4

√
3α2κ

β

For the case of solutions with trivial boundary conditions, the velocity satisfies the relation

u = 4

√
3κβ

σ

As it can be seen from the expressions for velocities, these quantities are not arbitrary. They
are restricted by the values of the parametric domain of concrete physical situation. It in
addition could enable one with some tool for manipulating the nonlinear waves in real ex-
periments.

The nonlinear classical structures that have great chance to be excited in the first case
is the peakon and in the second one is the compact pulse structure. The nonlinear system
analyzed here possesses a certain selective property. Having defined the parameters of the
model, along the chain will be excited only nonlinear traveling structures with specific val-
ues of discrete energies and velocities. The results of this work could be used in continuum
versions of discrete models like in DNA or crystals for example.
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